
insights.io 2025-02-19 08:22:42

OpenAI API API Results
The OpenAI REST API. Please see https://platform.openai.com/docs/api-reference for more details.

BETA

V2.3.0

https://api.openai.com/v1

110 endpoints

D 63
Overall API Score

AI Ready
2 Issues

D
60

Design
6 Issues

D
60

Performance
2 Issues

D
68

Security
4 Issues

D
68

https://apiinsights.io/

D
60

AI Ready

Fail Schema Types or Descriptions

Checks if each schema has descriptions or types

Fail Parameter Descriptions

Checks if each parameter has descriptions

Pass Operation ID

Checks if each operation has an id

Pass Response Descriptions

Checks if each response has descriptions

D
60

Design

Fail Consistent Pluralization

The base API endpoint provides the location of a group of resources (nouns). Therefore, your base
endpoints should be described as plural nouns. For example: /users vs. /user

Fail Unused Models

Checks for the presence of data models defined but not used.

Fail Examples Exist

Checks for presence of value or externalValue for examples.

Fail Consistent Noun Usage

API functionality is defined by the HTTP verb (method) and convey actions or a state of a resource (noun).
Therefore, your endpoints should be described as nouns instead of verbs. For example: POST method for
endpoint /user/{id} vs. /postUser/{id}

Fail Robust Responses

A robust API will return response codes that help users understand what happened, even when the
response is successful. This test checks to ensure your schema describes more than just (200) HTTP_OK
responses.

Fail Rate Limiting

Rate limiting is crucial for API security as it helps prevent abusive or malicious behavior by limiting the
number of requests a client can make within a specified time. It mitigates the risk of unauthorized access,
DDoS attacks, and resource exhaustion, ensuring fair and controlled usage of API resources while
maintaining system stability and security. This test checks for the x-ratelimit-limit or x-rate-limit headers in
the response payload to see if you use rate limiting.

Pass Versioning

Good API design provides a way manage changes that is transparent to API consumers and other API
producers. We recommend using url-based versioning, either v or V followed by a number (/v2) or numeric
based (/1).

Pass Multiple HTTP Methods

A robust API should be designed methodically, allowing users to perform multiple functions. This test checks
if your schema describes more than just GET response methods.

Pass Information Description

Check to ensure all operations contain either a description or summary.

Pass Operation Descriptions or Summaries

All operations must contain either a description or summary

Pass JSON Support

When designing APIs that send and receive JSON data, you should always declare the content-type header
as application/json. This test checks to make sure the content-type header is application/json.

Pass Contact Information

Checks for presence of contact name, email, or URL.

D
68

Performance

Fail Compression Support

Compression speeds up the transmission of data and reduces packet loss. This test checks to see if
compression content-encoding header exists.

Fail Cache Support

The cache-control header is used to specify browser caching policies, including how a resource is cached,
where it is cached, and it's expiration.

Skipped Response size

Checks if size of response is less than 100KB.

Pass Load Time

Load time is the time it takes for an API to process a request and return a response. While several factors
affect load time, users expect a response in 500ms or less. This test checks for load times of API responses.

Pass CDN Usage

Checks the base URL of the first entry in the servers section for responses of common CDN suppliers.

Pass HTTP2 Usage

Checks the base URL of the first entry in the servers section for version of the HTTP server.

D
68

Security

Fail Insecure Direct Object Reference(IDOR) Risks

Checks for Insecure Direct Object Reference (IDOR) risks which can allow malicious users to access or
modify objects by manipulating identifiers used in the API parameters. This test checks each path
parameter's definition: they must be of type string and format UUID or type string with a valid
UUID/ULID/Mongo ObjectID example present.

Fail Operation Enforces Security Scheme

Checks to ensure operation security field is defined. If not anyone can access the API without any
authentication.

Fail Content Security Policy

The Content-Security-Policy header allows you to restrict which resources can be loaded and what URLs they
can be loaded from. This test checks to see if the Content-Security-Policy header exists.

Fail iFrame Embedding

The X-Frame-Options header indicates whether a browser can render a page in a <frame> or <iframe>. If not
set to DENY, sites can manipulate user's activity via clickjacking attacks. This test check if the X-Frame-
Options header exists and its value is set to DENY.

Pass Global Security Field is Defined

Checks if security field is defined

Pass Secure URLs (HTTPs)

Good API design ensures that all data is transferred via an encrypted protocol. This test checks whether
requests require HTTPS.

Pass Strict Transport Security

The Strict-Transport-Security (HSTS) header is crucial for enforcing secure communication over HTTPS. When
a server includes the HSTS header in its response, it instructs the browser to always connect to the API using
HTTPS, even if the user enters an HTTP URL. This prevents potential downgrade attacks and ensures that all
communication remains encrypted. This test checks for the Strict-Transport-Security header in your API
responses.

Pass Authorization

API Authorization is crucial for ensuring secure access and protecting sensitive data. This tests checks to
ensure the securitySchemes object is present and is not empty.

Pass Security Field Contains a Scheme

Check to ensure there is no empty object in the security field.

Pass Content Type Options

The X-Content-Type-Options header plays a vital role in protecting the API from MIME sniffing attacks. By
setting the value of this header to nosniff, it instructs the browser to strictly adhere to the declared Content-
Type and prevents it from attempting to sniff or interpret the response data based on its content. This test
checks to see if the X-Content-Type-Options header exists and if its value is set to nosniff.

